投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出的数字分别作为点P的横坐标和纵坐标。(1)求点P落在区域C:内的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率。
某市规定中学生百米成绩达标标准为不超过16秒.现从该市中学生中按照男、女生比例随机抽取了50人,其中有30人达标.将此样本的频率估计为总体的概率. (1)随机调查45名学生,设ξ为达标人数,求ξ的数学期望与方差. (2)如果男、女生采用相同的达标标准,男、女生达标情况如下表:
根据表中所给的数据,完成2×2列联表(注:请将答案填到答题卡上),并判断在犯错误的概率不超过0.01的前提下能否认为“体育达标与性别有关”?若有,你能否给出一个更合理的达标方案? 附:
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,其中女性300人,男性200人.女性中有30人需要帮助,另外270人不需要帮助;男性中有40人需要帮助,另外160人不需要帮助. (1)根据以上数据建立一个2×2列联表. (2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关? 附:
在平面直角坐标系中,曲线C1的参数方程为(a>b>0,为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M对应的参数=,与曲线C2交于点D (1)求曲线C1,C2的普通方程; (2)A(ρ1,θ),Β(ρ2,θ+)是曲线C1上的两点,求的值
过抛物线y2=4x的焦点F作倾斜角为的直线,它与抛物线交于A、B两点,求这两点间的距离.
已知直线l经过点P(1,1),倾斜角为,且tan= (1)写出直线l的一个参数方程; (2)设l与圆x2+y2=4相交于两点A,B,求点P到A,B两点的距离之积.