2010年上海世博会举办时间为2010年5月1日--10月31日.此次世博会福建馆招募了60名志愿者,某高校有13人入选,其中5人为中英文讲解员,8人为迎宾礼仪,它们来自该校的5所学院(这5所学院编号为1、2、3、4、5号),人员分布如图所示. 若从这13名入选者中随机抽出3人.(1)求这3人所在学院的编号正好成等比数列的概率;(2)求这3人中中英文讲解员人数的分布列及数学期望.
如图,已知点是平行四边形所在平面外的一点,、分别是、上的点且,求证:平面.
已知圆,问是否存在斜率为的直线,使以被圆截得的弦为直径的圆经过原点.若存在,写出直线的方程;若不存在,说明理由.
平行四边形的两邻边所在直线的方程为及,对角线的交点是,求另两边所在直线的方程.
设a、b、c均为实数,求证:++≥++.
自极点O作射线与直线相交于点M,在OM上取一点P,使得,求点P的轨迹的极坐标方程.