(本小题共13分)已知椭圆和直线L:="1," 椭圆的离心率,直线L与坐标原点的距离为。(1)求椭圆的方程;(2)已知定点,若直线与椭圆相交于C、D两点,试判断是否存在值,使以CD为直径的圆过定点E?若存在求出这个值,若不存在说明理由。
某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:
已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款,其利润为1.5万元;分4期或5期付款,其利润为2万元.用表示经销一辆汽车的利润.(1)求上表中的值;(2)若以频率作为概率,求事件:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率;(3)求的分布列及数学期望.
已知函数(Ⅰ)求函数的最小正周期;(Ⅱ)确定函数在上的单调性并求在此区间上的最小值.
如图所示,四棱锥中,底面是个边长为的正方形,侧棱底面,且,是的中点.(I)证明:平面;(II)求三棱锥的体积.
中,角的对边分别为.已知.(I)求;(II)若,的面积为,且,求.
设的导数为,若函数的图象关于直线对称,且函数在处取得极值.(I)求实数的值;(II)求函数的单调区间.