(本小题共13分)已知等差数列的前项和为,且(1)求通项公式;(2)求数列的前项和
(本小题满分13分) 已知椭圆E中心在原点,一个焦点为 ,离心率(Ⅰ)求椭圆E的方程;(Ⅱ)是长为的椭圆E动弦,为坐标原点,求面积的最大值与最小值
(本小题满分13分) 某生产流水线由于改进了设备,预计改进后第一年年产量的增长率为,以后每年的增长率是前一年的一半,设原来的产量是(Ⅰ) 写出改进设备后的第一年、第二年、第三年的产量,并写出第年与第年的产量之间的关系式;(Ⅱ) 由于设备不断老化,估计每年将损失年产量的,如此下去,以后每年的产量是否始终是逐年提高?若是,请给予证明;若不是,请说明从第几年起,产量将比上一年减少?
(本小题满分12分)已知分别在射线(不含端点)上运动,,在中,角、、所对的边分别是、、.(Ⅰ)若、、依次成等差数列,且公差为2.求的值;(Ⅱ)若,,试用表示的周长,并求周长的最大值.
(本小题满分12分) 如图,边长为2的正方形中,点是的中点,点是的中点,将△、△分别沿、折起,使、两点重合于点,连接,.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.
(本小题满分12分) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数的分布列与期望