已知抛物线,为坐标原点.(Ⅰ)过点作两相互垂直的弦,设的横坐标为,用表示△的面积,并求△面积的最小值;(Ⅱ)过抛物线上一点引圆的两条切线,分别交抛物线于点, 连接,求直线的斜率.
如图,在△ABC中,延长BC到D,使CD=BC,取AB的中点F,连接FD交AC于点E.(1)求的值;(2)若AB=a,FB=EC,求AC的长.
如图所示,在△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,求+的值.
已知AD是△ABC的内角平分线,求证:=.
如图所示,已知平面α∥平面β,点P是平面α、β外一点,且直线PB分别与α、β相交于A、B,直线PD分别与α、β相交于C、D.(1)求证:AC∥BD;(2)如果PA=4 cm,AB=5 cm,PC=3 cm,求PD的长.
如图,以梯形ABCD的对角线AC及腰AD为邻边作平行四边形ACED,DC的延长线交BE于点F,求证:EF=BF.