(本小题满分12分)求证:
(本小题满分13分)已知曲线C:,O为坐标原点(Ⅰ)当m为何值时,曲线C表示圆;(Ⅱ)若曲线C与直线 交于M、N两点,且OM⊥ON,求m的值.
(本小题满分13分)已知是边长为1的正方体,求:(Ⅰ)直线与平面所成角的正切值;(Ⅱ)二面角的大小.
(本小题满分13分)某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
(Ⅰ)求图中a的值;(Ⅱ)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;(Ⅲ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?
(本小题满分12分)已知向量,,其中随机选自集合,随机选自集合,(Ⅰ)求的概率; (Ⅱ)求的概率.
(满分14分)已知函数,(),若同时满足以下条件: ①在D上单调递减或单调递增; ②存在区间[]D,使在[]上的值域是[],那么称()为闭函数. (1)求闭函数符合条件②的区间[]; (2)判断函数是不是闭函数?若是请找出区间[];若不是请说明理由; (3)若是闭函数,求实数的取值范围. (注:本题求解中涉及的函数单调性不用证明,直接指出是增还是减函数即可)