已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲乙两个盒中各任取2球(1)求取出的4个球均为黑球的概率(2)求取出的4个球中恰有1个红球的概率(3)设为取出的4个球中红球的个数,求的分布列和数学期望
已知命题p:关于的不等式对一切恒成立,命题q:函数是增函数,若p或q为真,p且q为假,求实数的取值范围.
(本小题满分14分)已知函数,其中为常数.(Ⅰ)当时,恒成立,求的取值范围;(Ⅱ)求的单调区间.
(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点,(Ⅰ)求椭圆C的标准方程;(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值.
(本题满分12分如图,四边形为矩形,且,,为上的动点。(1) 当为的中点时,求证:;(2) 设,在线段上存在这样的点E,使得二面角的平面角大小为。试确定点E的位置。
一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋。(1)求该人在4次投掷中恰有三次投入红袋的概率;(2)求该人两次投掷后得分的数学期望。