.(本小题满分14分)已知等比数列的公比为,首项为,其前项的和为.数列的前项的和为, 数列的前项的和为(Ⅰ)若,,求的通项公式;(Ⅱ)①当为奇数时,比较与的大小; ②当为偶数时,若,问是否存在常数(与n无关),使得等式恒成立,若存在,求出的值;若不存在,说明理由
如图, 在直三棱柱 ABC - A1B1C1中, D、 E分别是BC和CC1的中点, 已知AB=AC=AA1=4,∠BAC=90°.(Ⅰ)求证: B1D⊥平面AED;(Ⅱ)求二面角B1-AE-D的余弦值;(Ⅲ)求三棱锥A-B1DE的体积.
已知数列{an}的前n项和为Sn, 且满足a1 = 2, nan + 1 = Sn + n(n + 1).(Ⅰ)求数列{an}的通项公式an;(Ⅱ)设Tn为数列}的前n项和, 求Tn;(Ⅲ)设, 证明:
选修4-5: 不等式选讲已知函数 f (x)=" |x" - 2|,g(x)=" -|x" + 3| +m.(Ⅰ)若关于x的不等式 g(x)≥0的解集为 [-5, -1], 求实数m的值;(Ⅱ)若 f (x)的图象恒在 g(x)图象的上方, 求实数m的取值范围.
选修4-4: 坐标系与参数方程在极坐标系中, 已知圆C的圆心C(), 半径r =.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若 α ∈ , 直线的参数方程为为参数), 直线交圆C于A、 B两点, 求弦长|AB|的取值范围.
(本小题满分10分)选修4-5:不等式选讲已知实数,若不等式有解,记实数M的最小值为m.(1)求m的值;(2)解不等式.