在一个可以改变体积的容器内有一定质量的二氧化碳气体,当改变容器的体积时,气体的密度也会随之改变,密度与体积之间的函数关系如图所示。(1)通过图象你能得到什么信息(至少写一条)?(2)写出与之间函数关系式;(3)求当时,二氧化碳的密度。
已知,求和的值。
在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30º,求∠ACF度数.
请完成下面的说明:(1)如图①所示,△ABC的外角平分线交于G,试说明∠BGC=90°-∠A.说明:根据三角形内角和等于180°,可知∠ABC+∠ACB=180°-∠_____.根据平角是180°,可知∠ABE+∠ACF=180°×2=360°,所以∠EBC+∠FCB=360°-(∠ABC+∠ACB)=360°-(180°-∠_____)=180°+∠______.根据角平分线的意义,可知∠2+∠3=(∠EBC+∠FCB)=(180°+∠_____)=90°+∠_______.所以∠BGC=180°-(∠2+∠3)=90°-∠____.(2)如图②所示,若△ABC的内角平分线交于点I,试说明∠BIC=90°+∠A.(3)用(1),(2)的结论,你能说出∠BGC和∠BIC的关系吗?
如图所示,BE平分∠ABD,DE平分∠CDB,BE和DE相交于AC上一点E,如果∠BED=90°,试说明AB∥CD.
如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.