如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1) 求sin∠BAC的值; (2) 如果OE⊥AC, 垂足为E,求OE的长;(3) 求tan∠ADC的值.(结果保留根号)
如图,已知△ABC,按如下步骤作图: ①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N; ②连接MN,分别交AB、AC于点D、O; ③过C作CE∥AB交MN于点E,连接AE、CD. (1)求证:四边形ADCE是菱形; (2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.
一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分. (1)求直线l的函数关系式; (2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?
如图,AC是⊙O的直径,弦BD交AC于点E. (1)求证:△ADE∽△BCE; (2)如果AD2=AE•AC,求证:CD=CB.
解方程:.
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案) (1)点A关于点O中心对称的点的坐标为 ; (2)点A1的坐标为 ; (3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为 .