选修4-2:矩阵与变换(本小题满分10分)在平面直角坐标系xoy中,求圆C的参数方程为为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为若直线与圆C相切,求r的值。
已知平面区域恰好被面积最小的圆及其内部所覆盖. (1)试求圆的方程. (2)若斜率为1的直线与圆C交于不同两点满足,求直线的方程.
如图,在四棱锥中,底面是直角梯形,,且,侧面底面,是等边三角形. (1)求证:; (2)求二面角的大小.
在中,为它的三个内角,设向量且与的夹角为. (Ⅰ)求角的大小; (Ⅱ) 已知,求的值.
设数列的前项和为已知 (I)设,证明数列是等比数列 (II)求数列的通项公式。
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。 (1)求双曲线C的方程; (2)若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。