已知椭圆长轴上有一顶点到两个焦点之间的距离分别为:3+2,3-2.(1)求椭圆的方程;(2)如果直线 与椭圆相交于A,B,若C(-3,0),D(3,0),证明:直线CA与直线BD的交点K必在一条确定的双曲线上;(3)过点Q(1,0 )作直线l (与x轴不垂直)与椭圆交于M,N两点,与y轴交于点R,若,求证:为定值.
(本小题满分14分)已知函数. (1)当,时,求的单调区间; (2)设函数在点处的切线为,直线与轴相交于点.若点的纵坐标 恒小于,求实数的取值范围.
(本小题满分14分)已知椭圆(,)的离心率,并且经过 定点. (1)求椭圆的方程; (2)问是否存在直线,使直线与椭圆交于,两点,满足?若存在,求的 值;若不存在,说明理由.
【改编】(本小题满分14分)已知数列中,,且点()均在函数的 图象上. (1)求数列的通项公式; (2)设,求数列的前项和.
(本小题满分14分)四棱锥中,底面,,,. (1)求证:平面; (2)若侧棱上的点满足,求三棱锥的体积.
【原创】(本小题满分12分)已知函数()的最小正周期为. (1)求的值; (2)若,,求的值.