如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O 的切线交直线AC于点D,点E为CH的中点,连结并延交BD于点F,直线CF交AB的延长线于G.⑴求证:AE·FD=AF·EC;⑵求证:FC=FB;⑶若FB=FE=2,求⊙O 的半径r的长.
如下图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=25°,求∠COE、∠AOE、∠AOG的度数。
如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并说明理由.
与在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标: ; ; ;(2)说明由经过怎样的平移得到? .(3)若点(,)是内部一点,则平移后内的对应点的坐标为 ;(4)求的面积.
如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,铺设管道向两个小区输气.有以下两个方案:方案一:只取一个连接点P,使得向两个小区铺设的支管道总长度最短;方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N到D小区铺设的管道最短.om (1)在图中标出点P、M、N的位置,保留画图痕迹;(2)设方案一中铺设的支管道总长度为L1,方案二中铺设的支管道总长度为L2,则L1与L2的大小关系为:L1 L2(填“>”、“<”或“=”).
在y=ax2+bx+c中,当时,y=;时,y=;时,y=,求的值.