已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.
如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证: (1)CG=BH; (2)FC2=BF•GF; (3)=.
如图,在▱ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F. (1)求证:AB=AF; (2)当AB=3,BC=5时,求的值.
已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t. (Ⅰ)如图①,当∠BOP=30°时,求点P的坐标; (Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m; (Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
如图,四边形ABCD与四边形ACED都是平行四边形,R是DE的中点,BR交AC、CD于点P、Q.若AD=,AB=AC=2. 求:BP、PQ的长.
△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B. (1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形. (2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论. (3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.