(本小题满分12分)设函数的图象上两点P1(x1,y1)、P2(x2,y2),若,且点P的横坐标为. (1),求证:P点的纵坐标为定值,并求出这个定值; (2),求 (3),记Tn为数列的前n项和,若对一切n∈N*都成立,试求a的取值范围。
(本小题满分12分)已知各项均为正数的数列的前项和为,且.在数列中,,. (Ⅰ)求,; (Ⅱ)设求数列的前项和.
(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,,,且面试是否合格互不影响.求: (Ⅰ)至少有1人面试合格的概率; (Ⅱ)签约人数的分布列和数学期望.
(本小题满分12分)如图,已知四边形ABCD为正方形,平面,∥,且 (1)求证:平面; (2)求二面角的余弦值.
(本小题满分12分)设为的内角、、所对的边分别为、、,且. (1)求角的大小; (2)若,求的最值.
(本小题满分14分) (1)当时,求的极值点. (2)若,的图象与的图象有个不同的交点,求实数的范围.