数列{}的前n项和为Sn,已知(Ⅰ)求数列{}的通项公式;(Ⅱ)若数列{}满足求数列{}的前n项和Tn.(Ⅲ)张三同学利用第(Ⅱ)题中的Tn设计了一个程序流程图,但李四同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意李四同学的观点?请说明理由.
(本小题满分12分)数列的前n项和为,(1)求关于n的表达式;(2)设为数列的前n项和,试比较与的大小,并加以证明
(本小题满分12分)已知函数.(Ⅰ)若,求在上的最大值与最小值;(Ⅱ)设函数的图像关于原点对称,在点处的切线为,与函数的图像交于另一点.若在轴上的射影分别为、,,求的值.
(本小题满分12分)在四棱锥中,侧面底面,,为中点,底面是直角梯形,,=90°,,.(1)求证:平面;(2)求证:平面;(3)设为侧棱上一点,,试确定的值,使得二面角为45°.
(本小题满分12分)已知袋中装有标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,求(1)取出的3个小球上的数字各不相同的概率;(2)随机变量的概率分布和数学期望。
(本小题满分12分)已知△ABC的面积S满足,且·=6,与的夹角为。(1)求的取值范围;(2)若函数f()=sin2+2sincos+3cos2,求f()的最小值,并指出取得最小值时的。