如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.(Ⅰ)求证:EF⊥平面PBC;(Ⅱ)求二面角F-PC-B的平面角的余弦值.
已知,,且. (1)求的最值; (2)是否存在实数的值,使
已知函数,. (1)设是函数图像的一条对称轴,求的值; (2)求函数的单调递增区间.
设,是两个相互垂直的单位向量,且,. (1)若,求的值; (2)若,求的值.
已知:,,,,求的值.
如图,AB为圆O的直径,点C为圆O上异于A、B的一点,PA⊥平面ABC,点A在PB、PC上的射影分别为点E、F. ⑴求证:PB⊥平面AFE; ⑵若AB=4,PA=3,BC=2,求三棱锥C-PAB的体积与此三棱锥的外接球(即点P、A、B、C都在此球面上)的体积之比.