某政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.物价部门规定,这种护眼台灯的销售单价不得高于32元.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+n.(1)当销售单价x定为25元时,李明每月获得利润为w为1250元,则n= ;(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?并求最大利润为多少元.
如图,在某街道路边有相距 10 m 、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面 A 处测得路灯 PQ 的顶端仰角为 14 ° ,向前行走 25 m 到达 B 处,在地面测得路灯 MN 的顶端仰角为 24 . 3 ° ,已知点 A , B , Q , N 在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到 0 . 1 m .参考数据: sin 14 ° ≈ 0 . 24 , cos 14 ° ≈ 0 . 97 , tan 14 ° ≈ 0 . 25 , sin 24 . 3 ° ≈ 0 . 41 , cos 24 . 3 ° ≈ 0 . 91 , tan 24 . 3 ° ≈ 0 . 45 )
如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° ,点 D 在 AB 上,以 AD 为直径的 ⊙ O 与边 BC 相切于点 E ,与边 AC 相交于点 G ,且 AG ̂ = EG ̂ ,连接 GO 并延长交 ⊙ O 于点 F ,连接 BF .
(1)求证:
① AO = AG .
② BF 是 ⊙ O 的切线.
(2)若 BD = 6 ,求图形中阴影部分的面积.
甲、乙两同学的家与某科技馆的距离均为 4000 m .甲、乙两人同时从家出发去科技馆,甲同学先步行 800 m ,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到 2 . 5 min .求乙到达科技馆时,甲离科技馆还有多远.
如图所示,甲、乙两人在玩转盘游戏时,分别把转盘 A , B 分成3等份和4等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.
(1)利用画树状图或列表的方法,求甲获胜的概率.
(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘 A 上只修改一个数字使游戏公平(不需要说明理由).
为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:
(1)本次抽样调查学生的人数为 .
(2)补全两个统计图,并求出扇形统计图中 A 所对应扇形圆心角的度数.
(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.