某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出).(1)实验所用的2号果树幼苗的数量是_______株;(2)求出3号果树幼苗的成活数,并把图2的统计图补充完整;(3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由.
是两块完全重合的等边三角形纸片(如图①所示),O是AC(或EF)的中点,不动,将绕O点顺时针转. (1)试分别说明是多少度时,点F在外部、BC上、内部(不证明)? (2)当点F不在BC上时,在图②、图③两种情况下(设EF或延长线与BC交于P,EG与CA或延长线交于Q),分别写出OP与OQ的数量关系,并从图②、③中选一种情况给予证明).
小红按某种规律写出4个方程:①;②;③;④. (1)上述四个方程根的情况如何?为什么? (2)按此规律,请你写出一个两根都为整数的方程,并解这个方程.
计算:
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点的坐标分别为B(1,0), C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少? (3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.
随着农业科技的不断发展,农田灌溉也开始采用喷灌的形式(如图甲).在田间安装一个离开地面一定高度且垂直于地面的喷头,喷头可旋转360.,喷出的水流呈抛物线形状. 如图乙,用OA表示垂直于地面MN的喷头,米,水流在与OA的距离10米时达到最高点,这时最高点离地面5米.如果不计其它因素,当喷头环绕一周后,能喷灌的最大直径是多少米(结果精确到0.1,参考数据)?