某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系。(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.
如图,AB是⊙O的直径,C、G是⊙O上两点,且,过点C的直线CDBG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求E的度数.(3)连接AD,在(2)的条件下,若CD=,求AD的长.
如图,为美化校园环境,某校计划在一块长为60米,宽为4米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米. (1)用含的式子表示花圃的面积.(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.(3)已知某园林公司修建通道、花圃的造价(元)、(元)与修建面积之间的函数关系如图13-2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?
如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:≌.(2)若DEB=90,求证四边形DEBF是矩形.
今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:
(1)求全班学生人数和的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出ABC关于y轴对称的;(2)将ABC绕着点B顺时针旋转90后得到,请在图中画出,并求出线段BC旋转过程中所扫过的面积(结果保留).