如图,要测量池塘A、B两点间的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再过D点作出BF的垂线DG,并在DG上找一点E,使点A、C、E在一条直线上,这时,测量DE的长就是AB的长,为什么?
将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米. (1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式); (2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且D点的横坐标是它的纵坐标的2倍. (1)求边AB的长; (2)求反比例函数的解析式和n的值; (3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
如图,已知直线与双曲线交于两点,且点的横坐标为. (1)求的值; (2)若双曲线上一点的纵坐标为8,求的面积; (3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.
如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)B两点,BC⊥x轴,垂足为C,△AOC的面积是1. (1)求m、n的值; (2)求直线AC的解析式; (3)结合图象直接写出当时,的取值范围.
如图,在平面直角坐标系xOy中,点,B(3,n)在反比例函数(m为常数)的图象G上,连接AO并延长与图象G的另一个交点为点C,过点A的直线l与x轴的交点为点D(1,0),过点C作CE∥x轴交直线l于点E. (1)求m的值及直线l对应的函数表达式; (2)求点E的坐标; (3)求证:∠BAE=∠ACB.