如图,在梯形ABCD中,AD∥BC, AB = CD,E是AD的中点,AD=4,BC=6,点P是BC边上的动点(不与点B重合),PE与BD相交于点O,设PB的长为x.(1) 当P点在BC边上运动时,求证:△BOP∽△DOE.(2) 当x = ( )时,四边形ABPE是平行四边形;当x = ( )时,四边形ABPE是直角梯形;(3)当P在BC上运动的过程中,四边形ABPE会不会是等腰梯形?试说明理由.
在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°. (1)如图1,当点A、C、D在同一条直线上时,AC=12,EC=5. ①求证:AF⊥BD, ②求AF的长度; (2)如图2,当点A、C、D不在同一条直线上时.求证:AF⊥BD; (3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,∠AFG是一个固定的值吗?若是,求出∠AFG的度数,若不是,请说明理由.
如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.(1)判断线段AB与DE的数量关系和位置关系,并说明理由;(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.
如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F. (1)若△CMN的周长为20cm,求AB的长; (2)若∠MFN=70°,求∠MCN的度数.
如图,在四边形ABCD中,∠BAD=∠BCD=90°,M、N分别是BD、AC的中点.(1)求证:MN⊥AC;(2)若∠ADC=120°,求∠1的度数.
如图,在△ABC中,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E. (1)求证:AD=AE; (2)若BE∥AC,试判断△ABC的形状,并说明理由.