两个大小相同且含角的三角板ABC和DEC如图①摆放,使直角顶点重合. 将图①中△DEC绕点C逆时针旋转得到图②,点F、G分别是CD、DE与AB的交点,点H是DE与AC的交点. (1)不添加辅助线,写出图②中所有与△BCF全等的三角形;(2)将图②中的△DEC绕点C逆时针旋转得△D1E1C,点F、G、H的对应点分别为F1、G1、H1,如图③.探究线段D1F1与AH1之间的数量关系,并写出推理过程; (3)在(2)的条件下,若D1E1与CE交于点I,求证:G1I =CI.
已知二次函数. (1)若点与在此二次函数的图象上,则(填 “>”、“=”或“<”); (2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作交AP于E点. (1)求证:DE为⊙O的切线; (2)若DE=3,AC=8,求直径AB的长.
如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为r米,面积为S平方米.(注:的近似值取3) (1)求出S与r的函数关系式,并写出自变量的取值范围; (2)当半径r为何值时,扇形花坛的面积最大,并求面积的最大值.
如图,AB是⊙O的弦,OC⊥AB于点C,连接OA,AB=12,⊙O半径为10. (1)求OC的长; (2)点E,F在⊙O上,EF∥AB.若EF=16,直接写出EF与AB之间的距离.
已知:二次函数y=x2+bx-3的图象经过点A(2,5). (1)求二次函数的解析式; (2)求二次函数的图象与x轴的交点坐标; (3)将(1)中求得的函数解析式用配方法化成y=(x-h)2+k的形式.