某商场开展购物抽奖活动,抽奖箱中有3个形状、大小和质地等完全相同的小球,分别标有数字1、2、3.顾客从中随机摸出一个小球,然后放回箱中,再随机摸出一个小球.(1)利用树形图法或列表法(只选其中一种),表示摸出小球可能出现的所有结果;(2)若规定:两次摸出的小球的数字之积为9,则为一等奖;数字之积为偶数,则为二等奖.请你分别求出顾客抽中一等奖、二等奖的概率.
如图所示,每一个小方格都是边长为1的单位正方形。△ABC的三个顶点都在格点上,以点O为坐标原点建立平面直角坐标系。 (1)画出△ABC先向左平移3个单位,再向下平移2个单位的△A1B1C1,并写出点B1的坐标; (2)画出将△ABC绕点O顺时针旋转90°后的△A2B2C2,并求出点A旋转到A2所经过的路径长。
已知关于的函数的图像与坐标轴只有2个交点,求的值.
先化简,再求值:,其中a=2-
计算:
如图,已知中,厘米,厘米,点为的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?