对于抛物线 .(1)它与x轴交点的坐标为 ,与y轴交点的坐标为 ,顶点坐标为 ;(2)在坐标系中利用描点法画出此抛物线;
(3)利用以上信息解答下列问题:若关于x的一元二次方程(t为实数)在<x<的范围内有解,则t的取值范围是 .
如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.(1)求证:△ADF≌△CBE;(2)求正方形ABCD的面积;(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.
如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.
我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似的,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线.通过观察、测量,猜想EF和AD、BC有怎样的位置和数量关系?并证明你的结论.
在一个口袋中有4个完全相同的小球,把它们分别标上数字﹣1,0,1,2,随机的摸出一个小球记录数字然后放回,在随机的摸出一个小球记录数字.求下列事件的概率:(1)两次都是正数的概率P(A);(2)两次的数字和等于0的概率P(B).
如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠P=50°,求∠BAC的度数.