(本小题满分13分)平地上有一条水渠,其横断面是一段抛物线弧,如图,已知渠宽为,渠深为6。(1)若渠中水深为4,求水面的宽,并计算水渠横断面上的过水面积;(2)为了增大水渠的过水量,现要把这条水渠改挖(不能填土)成横断面为等腰梯形的水渠,使水渠的底面与地面平行(不改变渠深),要使所挖土的土方量最少,请你设计水渠改挖后的底宽,并求出这个底宽。
(本小题满分12分) 设奇函数对任意都有求和的值;数列满足:=+,数列是等差数列吗?请给予证明;
(本小题满分12分) 已知向量,且与向量的夹角为,其中是的内角 (1)求角的大小 (2)求的取值范围
(本小题满分12分) 某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用平均建筑费用平均购地费用,平均购地费用)
(本小题满分12分) 已知函数的定义域为集合,的值域为集合,.(1)求和; (2)求、.
设是给定的正整数,有序数组同时满足下列条件: ① ,; ②对任意的,都有. (1)记为满足“对任意的,都有”的有序数组的个数,求; (2)记为满足“存在,使得”的有序数组的个数,求