先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.
如图,已知∠MON=90º,等边△ABC的一个顶点A是射线OM上的一定点,顶点B与点O重合,顶点C在∠MON内部. (1)当顶点B在射线ON上移动到B1时,连结AB1,请在∠MON内部作出以AB1为边的等边三角形AB1C1(保留作图痕迹,不写作法和证明); (2)设AB1与OC交于点Q,AC的延长线与B1C1交于点D.求证: (3)连结CC1,试猜想∠ACC1为多少度?并证明你的猜想.
某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
如图,A、B、C是三个几何体,箭头所指方向是它们的正面.设A、B、C三个几何体的主视图分别是A1、B1、C1;左视图分别是A2、B2、C2;俯视图分别是A3、B3、C3.(1)请你分别写出A1、A2、A3、B1、B2、B3、C1、C2、C3所表示的图形的名称;(2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A1、A2、A3的三张卡片放在甲口袋中;画有B1、B2、B3的三张卡片放在乙口袋中;画有C1、C2、C3的三张卡片放在丙口袋中.然后由小强随机从这三个口袋中各取一张卡片.①补全下面的树状图,并求小强随机抽取的三张卡片上图形名称都相同的概率.②小刚和小强做游戏,游戏规则是:在小强随机抽取的三张卡片中,三张卡片上的图形名称都相同时,小刚获胜;三张卡片上的图形名称完全不同时,小强获胜.这个游戏对双方公平吗?为什么?
某住宅小区有一正南朝向的居民楼,如下图,该居民楼的一楼是高6m的小区超市,超市以上是居民住房.在该楼前方15m处准备盖一幢高20m的新楼.已知当地冬季正午的阳光与水平线夹角为32°. (1)超市以上居民住房采光是否受到影响?为什么? (2)若要使居民住房采光不受影响,两楼至少应相距多少米? (结果保留整数,参考数据:sin32o≈,cos32o≈,tan32o≈)
在平面直角坐标系中,已知二次函数的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3).(1)求此二次函数的表达式;(2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°. 若存在,求出点P的坐标;若不存在,请说明理由;(3)点K抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由