矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.(1)求证:⊿AEF∽⊿DCE(2)求tan∠ECF的值.
今年3月5日,光明中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道、去敬老院服务和到社区文艺演出三项。从九年级参加活动的同学中抽取了部分同学对打扫街道、去敬老院服务和到社区文艺演出的人数进行了统计,并做了如下直方图和扇形统计图。请根据两个图形,回答以下问题:(1)抽取的部分同学的人数?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去敬老院的人数.
如图,在平行四边形中,以点为圆心,为半径的圆,交于点.(1)求证:≌;(2)如果,,,求的长.
解方程:.
已知:如图,⊥,∥,,.点在线段上,联结,过点作的垂线,与相交于点.设线段的长为.(1)当时,求线段的长;(2)设△的面积为,求关于的函数解析式,并写出函数的定义域;(3)当△∽△时,求线段的长.
已知:如图,抛物线与轴的负半轴相交于点,与轴相交于点(0,3),且∠的余切值为.(1)求该抛物线的表达式,并写出顶点的坐标;(2)设该抛物线的对称轴为直线,点关于直线的对称点为,与直线相交于点.点在直线上,如果点是△的重心,求点的坐标;(3)在(2)的条件下,将(1)所求得的抛物线沿轴向上或向下平移后顶点为点,写出平移后抛物线的表达式.点在平移后的抛物线上,且△的面积等于△的面积的2倍,求点的坐标.