用适当的方法解方程:(1) (2)(3) (4)
在不透明的布袋里装有白、红、黄三种颜色的乒乓球(除颜色外其余都相同),其中白球有1个,红球有2个,黄球1个.(1)求从袋中摸出一个球恰好是黄球的概率;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是红球的概率.
如图,已知二次函数的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的表达式;(2)设该二次函数的对称轴与x轴交于点C,连结BA,BC,求△ABC的面积.
如图,点A,B,C,D在⊙O上,且AB=CD,求证:CE=BE.
如图,已知抛物线的方程C1:(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40 元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.