如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当∠ECA=∠OAC时,求t的值.(图文不相符)
如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.任意闭合其中一个开关,则小灯泡发光的概率等于___任意闭合其中两个开关,请用画树状图或列表的方法求出小 灯泡发光的概率.
如图,在△ABC中,BC>AC,点D在BC上,且DC=AC.利用直尺与圆规先作∠ACB的平分线,交AD于F点,再作线段AB的垂直平分线,交AB于点E,最后连接EF.若线段BD的长为6,求线段EF的长
解方程组:
家惠商场服装部为促进营销、吸引顾客,决定试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%.试销过程中发现,销售量(件)与销售单价(元)之间存在如图所示的一次函数关系.求关于的函数关系式(不必写出x的取值范围);求试销期间该服装部销售该品牌服装获得利润W(元)与销售单价x(元)的函数关系式;销售单价定为多少元时,服装部可获得最大利润,最大利润是多少元?如果在试销期间该服装部想要获得500元的利润,那么销售单价应定为多少元?若在试销期间该服装部获得利润不低于500元,试确定销售单价的范围.
如图,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于点B(1,m)、C(2,2).求直线与抛物线的解析式.若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=,求当△PON的面积最大时tan的值.若动点P保持(2)中的运动线路,问是否存在点P,使得△POA的面积等于△PON的面积的?若存在,请求出点P的坐标;若不存在,请说明理由