在一幅长8分米,宽6分米的矩形风景画(如图1)的四周镶嵌宽度相同的金色纸边,制成一幅矩形挂图(如图2).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.
如图,已知:EC=AC,∠BCE=∠DCA,∠A=∠E 求证:∠B=∠D
解分式方程:
计算:(2a+b)(2a-b)+b(2a+b)-8a2b÷2b
问题1如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是什么?研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是什么?研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是什么?
如图,已知∠AOB内部有三条射线,OE平分∠BOC,OF平分∠AOC.(1)若∠AOB=90°,∠AOC=30°,求∠EOF的度数;(2)若∠AOB=,求∠EOF的度数(写出求解过程);(3)若将条件中“OE平分∠BOC,OF平分∠AOC.平分”改为“∠EOB=∠COB,∠COF=∠COA”,且∠AOB=,求∠EOF的度数(写出求解过程).