为了了解中小学今年阳光体育运动的开展情况,某市教育局进行了一次随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.随机调查了720名学生,用所得的数据制成了扇形统计图(图1)和频数分布直方图(图2).根据图示,请回答以下问题:每天锻炼未超1h的原因中是“没时间”的人数是 ,并补全频数分布直方图;2012年该市中小学生约32万人,按此调查,可以估计2012年全市中小学生每天锻炼超过1h的约有多少万人?
解方程:8x﹣2=x(4﹣x)
如图,在平面直角坐标系中,已知抛物线交轴于A(2,0),B(6,0)两点,交轴于点C(0,).(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧EF所对圆心角的度数;(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.
如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.
某服装经营部每天的固定费用为300元,现试销一种成本为每件80元的服装.规定试销期间销售单价不低于成本单价,且获利不得高于35%.经试销发现,每件销售单价相对成本提高x(元)(x为整数)与日均销售量y(件)之间的关系符合一次函数y=kx+b,且当x=10时,y=100;x=20时,y=80.(1)求一次函数y=kx+b的关系式;(2)设该服装经营部日均获得毛利润为W元(毛利润=销售收入-成本-固定费用),求W关于x的函数关系式;并求当销售单价定为多少元时,日均毛利润最大,最大日均毛利润是多少元?
已知△ABC是等腰直角三角形,∠A=90°,点D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E.(1)若BD是AC边上的中线,如图1,求的值;(2)若BD是∠ABC的角平分线,如图2,求的值.