如图,在三棱锥中, (1)求证:平面⊥平面(2)求直线PA与平面PBC所成角的正弦值;(3)若动点M在底面三角形ABC上,二面角M-PA-C的余弦值为,求BM的最小值.
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(Ⅰ)求证: AE∥平面DCF;(Ⅱ)若,且二面角A—EF—C的大小为,求的长。
质点在轴上从原点出发向右运动,每次平移一个单位或两个单位,且移动一个单位的概率为,移动2个单位的概率为,设质点运动到点的概率为。(Ⅰ)求和;(Ⅱ)用表示,并证明是等比数列; (Ⅲ)求.
(本小题满分14分) 对函数Φ(x),定义fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n为常数)为Φ(x)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.(1)当Φ(x)=2x时 ①求f0(x)和fk(x)的解析式; ②求证:Φ(x)的各阶阶梯函数图象的最高点共线;
(本小题满分12分)设直线l(斜率存在)交抛物线y2=2px(p>0,且p是常数)于两个不同点A(x1,y1),B(x2,y2),O为坐标原点,且满足=x1x2+2(y1+y2).(1)求证:直线l过定点;(2)设(1)中的定点为P,若点M在射线PA上,满足,求点M的轨迹方程.
(本小题满分12分)已知等差数列{an2}中,首项a12=1,公差d=1,an>0,n∈N*.(1)求数列{an}的通项公式;(2)设bn=,数列{bn}的前120项和T120;