已知圆O:交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交直线于点Q.(1)求椭圆C的标准方程;(2)若点P的坐标为(1,1),求证:直线PQ圆O相切;(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若是的充分而不必要条件,求实数m的取值范围.
双曲线与椭圆有相同焦点,且经过点,求其方程。
已知函数.若,求的值;当时,求的单调区间.
给出施化肥量(kg)对水稻产量(kg)影响的试验数据:
(1)试求出回归直线方程; (2)请估计当施化肥量为10时,水稻产量为多少? (已知:7.5×31.25+2.5×16.25+2.5×3.75+7.5×43.75=612.5,2×7.5×7.5+2×2.5×2.5=125)
考察某种药物预防甲型H1N1流感的效果,进行动物试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本. (Ⅰ)根据所给样本数据完成下面2×2列联表; (Ⅱ)请问能有多大把握认为药物有效?
(参考数据:)