已知甲乙两人约定到羽毛球馆去打球,两人都在9:30---11:30时刻到达,若两人到达时刻相差20分钟以内,两人可以一起玩球,否则先到者就和别人在一起玩球,求甲乙两人没在一起玩球的概率.
在五棱锥P—ABCDE中,PA=AB=AE=2a,PB=PE=2a,BC=DE=a,∠EAB=∠ABC= ∠DEA=90°. (1)求证:PA⊥平面ABCDE; (2)求二面角A—PD—E的余弦值.
如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.
已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点. (1)求证:平面B1EF⊥平面BDD1B1; (2)求点D1到平面B1EF的距离.
如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6, OE∥AD. (1)求二面角B-AD-F的大小; (2)求直线BD与EF所成的角的余弦值.
如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线 BD′上,∠PDA=60°. (1)求DP与CC′所成角的大小; (2)求DP与平面AA′D′D所成角的大小.