如图,A、B为⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合),我们称∠APB为⊙O上关于A、B的滑动角。(1)已知∠APB是上关于点A、B的滑动角。① 若AB为⊙O的直径,则∠APB= ② 若⊙O半径为1,AB=,求∠APB的度数(2)已知为外一点,以为圆心作一个圆与相交于A、B两点,∠APB为上关于点A、B的滑动角,直线PA、PB分别交于点M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系。
我们新定义一种三角形:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形. (1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题? (2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c; (3)如图,AB是⊙O的直径,点C是⊙O上一点(不与点A,B重合),D是半圆 的中点,C,D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE. 求证:△ACE是奇异三角形.
在“文化南长•全民阅读”活动中,某中学社团“清风读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查.2014年全校有1000名学生,2015年全校学生人数比2014年增加10%,2016年全校学生人数比2015年增加100人. (1)2016年全校学生有 人; (2)2015年全校学生人均阅读量比2014年多1本,阅读总量比2014年增加1700本. (注:阅读总量=人均阅读量×人数) ①求2014年全校学生人均阅读量; ②2014年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2015年、2016年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2016年全校学生人均阅读量比2014年增加的百分数也是a,那么2016年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.
如图,AC是⊙O的直径,PB切⊙O于点D,交AC的延长线于点B,且∠DAB=∠B. (1)求∠B的度数; (2)若BD=9,求BC的长.
如图,在矩形ABCD中, CF⊥BD分别交BD、AD于点E、F. (1)求证:△DEC ∽ △FDC; (2)若DE=2,F为AD的中点,求BD的长度.
(1)如图①,用尺规作图作出圆的一条直径EF(不写作法,保留作图痕迹); (2)如图②,A、B、C、D为圆上四点,AB∥CD,AB<CD,请只用无刻度的直尺,画出圆的一条直径EF(不写画法,保留画图痕迹).