小强骑自行车去郊游,如图表示他离家的距离(千米)与所用的时间(小时)之间关系的函数图象,小强9点离开家,15点回家. 根据这个图象,请你回答下列问题:(1)小强到离家最远的地方需几小时?此时离家多远?(2)何时开始第一次休息?休息时间多长?(3)小强返回家时,何时距家21㎞?(写出计算过程).
如图:正方形OABC中,B点的坐标为(2,2).D、E分别在边AB、BC上,F在BC的延长线上.且AD=CF,∠EDO=∠DOC. (1)猜想△OAD与△OCF能否通过旋转重合?请证明你的猜想. (2)若D是AB的中点.求直线DE的解析线.
在直角坐标系中,横、纵坐标都为整数的点叫做整点,设坐标轴的单位长为1cm,整点P从原点O出发,速度为1cm/秒,且点P只能向上或向右运动.请回答下列问题: (1)填表:
(2)当点P从点O出发10秒时,可得到的整点的个数是_________个; (3)当点P从O点出发__________秒时,可得到整点(10,5); (4)当点P从点O出发30秒时,整点P恰好在直线y=2x-6上,请求P点坐标.
如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1. (1)判断△BEC的形状,并说明理由? (2)判断四边形EFPH是什么特殊四边形?并证明你的判断; (3)求四边形EFPH的面积.
设一次函数的图象为,一次函数的图象为直线,若,且,我们就称直线与直线互相平行.解答下面的问题: (1)求过点P(1,4)且与已知直线平行的直线的函数表达式,并画出直 线的图象; (2)设(1)中的直线分别与轴、y轴交于A、B两点,直线分别与轴、 y轴交于C、D两点,求四边形ABCD的面积.
某校为绿化校园,计划购买13600元树苗,并且希望这批树苗的成活率为92%.已知:甲种树苗每株50元,乙种树苗每株10元;甲、乙两种树苗的成活率分别为90%和95% .求:甲、乙两种树苗各购多少株?