已知椭圆:的离心率为,且过点.(Ⅰ)求椭圆的标准方程;(Ⅱ)垂直于坐标轴的直线与椭圆相交于、两点,若以为直径的圆经过坐标原点.证明:圆的半径为定值.
已知函数 (1)求的最小正周期; (2)若,求的最大值、最小值及相应的x的值。
已知数列前项和, (1)求其通项;(2)若它的第项满足,求的值。
设椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a , b > 0 ) 过 M ( 2 , 2 ) , N ( 6 , 1 ) 两点, O 为坐标原点, (1)求椭圆 E 的方程; (2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆 E 恒有两个交点 A , B ,且 O A ⇀ ⊥ O B ⇀ ?若存在,写出该圆的方程,若不存在说明理由。
已知函数的图象过点(-1,-6),且函数的图象关于y轴对称. (1)求、的值及函数的单调区间; (2)若函数在(-1,1)上单调递减,求实数的取值范围。
已知动点与平面上两定点连线的斜率的积为定值. (1)试求动点的轨迹方程; (2)设直线与曲线交于M.N两点,当时,求直线的方程.