一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.(1)若口袋中有3个红球,求从任意摸出一个球是白球的概率,并用列表或画树状图的方法说明;(2)若从袋中任意摸出一球,摸到白球的概率为,求口袋中红球的个数.
阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.
(1)特例感知:如图(一 ) ,已知边长为2的等边 ΔABC 的重心为点 O ,求 ΔOBC 与 ΔABC 的面积.
(2)性质探究:如图(二 ) ,已知 ΔABC 的重心为点 O ,请判断 OD OA 、 S ΔOBC S ΔABC 是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.
(3)性质应用:如图(三 ) ,在正方形 ABCD 中,点 E 是 CD 的中点,连接 BE 交对角线 AC 于点 M .
①若正方形 ABCD 的边长为4,求 EM 的长度;
②若 S ΔCME = 1 ,求正方形 ABCD 的面积.
习近平总书记说:"读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气".某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.
(1)求这两种书的单价;
(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?
如图,在平面直角坐标系中,点 O 为坐标原点,菱形 OABC 的顶点 A 的坐标为 ( 3 , 4 ) .
(1)求过点 B 的反比例函数 y = k x 的解析式;
(2)连接 OB ,过点 B 作 BD ⊥ OB 交 x 轴于点 D ,求直线 BD 的解析式.
如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 ⊙ O 交 BC 于点 D ,过点 D 作 DE ⊥ AC ,垂足为点 E .
(1)求证: ΔABD ≅ ΔACD ;
(2)判断直线 DE 与 ⊙ O 的位置关系,并说明理由.
"停课不停学".突如其来的新冠肺炎疫情让网络学习成为了今年春天一道别样的风景.隔离的是身体,温暖的是人心."幸得有你,山河无恙".在钟南山、白衣天使等人众志成城下,战胜了疫情.在春暖花开,万物复苏之际,某校为了解九年级学生居家网络学习情况,以便进行有针对性的教学安排,特对他们的网络学习时长(单位:小时)进行统计.现随机抽取20名学生的数据进行分析:
收集数据:4.5,6,5.5,6.5,6.5,5.5,7,6,7.5,8,6.5,8,7.5,5.5,6.5,7,6.5,6,6.5,5
整理数据:
时长 x (小时)
4 < x ⩽ 5
5 < x ⩽ 6
6 < x ⩽ 7
7 < x ⩽ 8
人数
2
a
8
4
分析数据:
项目
平均数
中位数
众数
数据
6.4
6.5
b
应用数据:
(1)填空: a = , b = ;
(2)补全频数直方图;
(3)若九年级共有1000人参与了网络学习,请估计学习时长在 5 < x ⩽ 7 小时的人数.