(本小题满分11分)已知函数,(1)求函数的定义域;(2)设,若函数在(2,3)内有且仅有一个零点,求实数的取值范围;(3)设,求函数在[3,9]内的值域;
已知直角坐标平面内点到点与点的距离之和为(Ⅰ)试求点的轨迹的方程;(Ⅱ)若斜率为的直线与轨迹交于、两点,点为轨迹上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.
(本小题满分12分)已知向量,. (1)若,分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率;(2)若,求满足的概率.
已知锐角三角形的内角的对边分别为,且 (1)求的大小; (2)若,三角形ABC的面积为1 ,求的值。
将正整数排成下表: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …… 则数表中的300应出现在第 行.
(本小题满分14分)若由数列生成的数列满足对任意的其中,则称数列为“Z数列”。(I)在数列中,已知,试判断数列是否为“Z数列”;(II)若数列是“Z数列”,(III)若数列是“Z数列”,设求证