科已知.(1)若,求的夹角。 (2)若的夹角为45°,求的值;
关于的不等式. (Ⅰ)当时,解此不等式; (Ⅱ)设函数,当为何值时,恒成立?
已知曲线的极坐标方程是,直线的参数方程是(为参数). (Ⅰ)将曲线的极坐标方程化为直角坐标方程; (Ⅱ)设直线与轴的交点是,是曲线上一动点,求的最大值.
如图,是△的外接圆,D是的中点,BD交AC于E. (Ⅰ)求证:; (Ⅱ)若,O到AC的距离为1,求⊙O的半径
椭圆C:的离心率为,长轴端点与短轴端点间的距离为. (1)求椭圆C的方程; (2)设过点的直线与椭圆C交于E,F两点,O为坐标原点,若为直角三角形,求直线的斜率.
如图所示,在边长为12的正方形中,点在线段上,且,作,分别交于点,.作,分别交于点,.将该正方形沿折叠,使得与重合,构成如图的三棱柱. (1)求证:平面; (2)求四棱锥的体积.