已知(-)n的展开式中,前三项系数的绝对值依次成等差数列.(1)证明:展开式中没有常数项;(2)求展开式中所有有理项.
在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+ S2=12,. (1)求与的通项公式; (2)设数列{}满足,求{}的前n项和.
对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策” 的态度有差异?
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人赞成“楼市限购政策”的概率. (参考公式:,其中.) 参考值表:
△ABC中,角A,B,C所对的边分别为且满足 (Ⅰ)求角C的大小; (Ⅱ)求的最大值,并求取得最大值时的大小.
已知函数. (1)求的单调区间; (2)当时,若方程有两个不同的实根和, (ⅰ)求实数的取值范围; (ⅱ)求证:.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (1)求椭圆的方程; (2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),求实数取值范围.