(本小题满分14分)已知函数在点处有极小值-1,(1)求的值 (2)求出的单调区间.(3)求处的切线方程.
增城市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。若该班学生共有48名,问没有参加任何一科竞赛的学生有多少名?
已知定义在上的奇函数在处取得极值.(Ⅰ)求函数的解析式; (Ⅱ)试证:对于区间上任意两个自变量的值,都有成立;(Ⅲ)若过点可作曲线的三条切线,试求点P对应平面区域的面积.
设,函数.(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)求函数在上的最小值.
已知函数.(I)若函数在点处的切线斜率为4,求实数的值;(II)若函数在区间上存在零点,求实数的取值范围
若关于的实系数方程有两个根,一个根在区间内,另一根在区间内,记点对应的区域为.(1)设,求的取值范围;(2)过点的一束光线,射到轴被反射后经过区域,求反射光线所在直线经过区域内的整点(即横纵坐标为整数的点)时直线的方程.