函数 f ( x ) = A sin ( ω x - π 6 ) + 1 , ( A > 0 , ω > 0 ) 的最大值为3, 其图像相邻两条对称轴之间的距离为 π 2 . (1)求函数 f ( x ) 的解析式; (2)设 α ∈ ( 0 , π 2 ) ,则 f ( α 2 ) = 2 ,求 α 的值
已知 (Ⅰ)若求的单调递减区间; (Ⅱ)若在区间上单调递增,求的取值范围.
计算: (Ⅰ); (Ⅱ)
如图,长方体的长、宽、高分别为4、3、5,已知分别为线段的中点. (1)求证:; (2)求多面体的体积.
某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算). 若某条线路的总里程为20公里,写出票价与里程之间的函数关系式,并求乘车16公里的票价.
己知⊙O:x2 +y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且. (1)求点N的轨迹C的方程; (2)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则kAD+kAE是否为定值?若是,求出该值;若不是,说明理由.