如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。
已知数列的首项为(1)若,求证:数列是等比数列;(2)若,求数列的前项和.
如图,三棱锥中,底面,,,点、分别是、的中点. (1)求证:⊥平面;(2)求二面角的余弦值。
二面角α-a-β的值为θ(0°<θ<180°),直线l⊥α,判断直线l与平面β的位置关系,并证明你的结论.
正方体ABCD-A1B1C1D1中,E、F分别是BB1,CC1的中点,求异面直线AE和BF所成角的大小.
如图,△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠ABC=∠DBC=120°,求(1) A、D连线和直线BC所成角的大小;(2) 二面角A-BD-C的大小