已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点。(1)求AB边所在的直线方程;(2)求中线AM的长。
.(本小题满分16分) 已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(1)求椭圆的方程; (2)设,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点; (3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值 范围.
.(本小题满分14分) 某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收 益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单 位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.现 有两个奖励方案的函数模型:(1);(2).试问这两个函数模 型是否符合该公司要求,并说明理由.
.(本小题满分14分) 已知矩形所在平面,,为线段上一点,为线段 的中点.(1)当E为PD的中点时,求证:; (2)当时,求证:BG//平面AEC.
(本小题满分14分) 已知向量与互相垂直,其中. (1)求和的值; (2)若,求的值.
“矩阵与变换和坐标系与参数方程”模块 已知直线的极坐标方程为,圆的参数方程为为参数. (Ⅰ)求圆上的点到直线的距离的最小值; (Ⅱ)若过点的直线与圆交于、两点,且,求直线的斜率.