如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SA⊥SC,且SA、SB、SC和底面ABC,所成的角分别为α1、α2、α3,三侧面SBC,SAC,SAB的面积分别为S1,S2,S3,类比三角形中的正弦定理,给出空间情形的一个猜想.
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明: (1)∠FEB=∠CEB; (2)EF2=AD·BC.
如图,圆O的半径OC垂直于直径AB,弦CD交半径 OA于E,过D的切线与BA的延长线交于M. (1)求证:MD=ME; (2)设圆O的半径为1,MD=,求MA及CE的长.
如图,已知PE切⊙O于点E,割线PBA交⊙O于A,B两点,∠APE的平分线和AE,BE分别交于点C,D. 求证:(1)CE=DE;(2).
如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于A,B的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BD,CD. (1)求证:BD平分∠CBE; (2)求证:AH·BH=AE·HC.
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D. (1)证明:DB=DC; (2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.