“六一”儿童节,小明与小亮受邀到科技馆担任义务讲解员,他们俩各自独立从A区(时代辉煌)、B区(科学启迪)、C区(智慧之光)、D区(儿童世界)这四个主题展区随机选择一个为参观者服务。(1)请用列表法或画树状图法说明当天小明与小亮出现在各主题展区担任义务讲解员的所有可能情况(用字母表示)。(2)求小明和小亮只单独出现在C区(智慧之光)、D区(儿童世界)两个主题展区中担任义务讲解员的概率。
如图,在平面内有A、B、C三点. (1)画直线AC、线段BC、射线BA; (2)画出△ABC的高CD,角平分线BE,中线AF
(10分) 2014年白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标 准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/ 吨,建筑垃圾处理费30元/吨.若该酒店2015年处理的这两种垃圾数量与2014年相比没有变化,就要多 支付垃圾处理费5100元. (1)、该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨? (2)、该酒店计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?
甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地 停留半个小时后返回A地,如图是他们离A地的距离(千米)与经过的时间(小时)之间的函数关系 图像. (1)、求甲从B地返回A地的过程中,与之间的函数关系式,并写出自变量的取值范围; (2)、若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?
如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE. (1)、若DE=CE,求∠A的度数;(2)、若BC=6,AC=8,求CE的长.
(8分) 一次函数y=的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC= (1)、请写出A,B两点坐标并在方格纸中画出函数图象与等腰Rt△ABC; (2)、求过B、C两点直线的函数关系式.