一个盒子中有5只同型号的灯泡,其中有3只合格品,2只不合格品。现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:(1)求第一次取到不合格品,且第二次取到的是合格品的概率;(2)求至少有一次取到不合格品的概率。
已知求的值
已知数列为正常数,且 (1)求数列的通项公式; (2)设 (3)是否存在正整数M,使得恒成立?若存在,求出相应的M的最小值;若不存在,请说明理由。
(1)已知当时,不等式恒成立,求实数的取值范围 (2)解关于的不等式.
如图所示,要用栏杆围成一个面积为50平方米的长方形花园,其中有一面靠墙不需要栏杆,其中正面栏杆造价每米200元,两个侧面栏杆每米造价50元,设正面栏杆长度为米. (1)将总造价y表示为关于的函数; (2)问花园如何设计,总造价最少?并求最小值.
已知等差数列的第二项为8,前10项和为185。 (1)求数列的通项公式; (2)若从数列中,依次取出第2项,第4项,第8项,……,第项,……按原来顺序组成一个新数列,试求数列的通项公式和前n项的和