(本小题满分12分)某班主任统计本班50名学生放学回家后学习时间的数据,用条形图表示(如图)。(1)求该班学生每天在家学习时间的平均值;(2)该班主任用分层抽样方法(按学习时间分五层)选出10个学生谈话,求在学习时间为1个小时的学生中选出的人数;(3)假设学生每天在家学习时间为18时至23时,已知甲每天连续学习2小时,乙每天连续学习3小时,求19时至20时甲、乙都在学习的概率.
已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真命题,求a的取值范围.
已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),且p是q的必要而不充分条件,求实数m的取值范围.
(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围; (2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在,求出p的取值范围.
写出下列命题的“否定”,并判断其真假. (1)p:x∈R,x2-x+≥0; (2)q:所有的正方形都是矩形; (3)r:x∈R,x2+2x+2≤0; (4)s:至少有一个实数x,使x3+1=0.
分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假. (1)p:4∈{2,3},q:2∈{2,3}; (2)p:1是奇数,q:1是质数; (3)p:0∈,q:{x|x2-3x-5<0}R; (4)p:5≤5,q:27不是质数; (5)p:不等式x2+2x-8<0的解集是{x|-4<x<2}, q:不等式x2+2x-8<0的解集是{x|x<-4或x>2}.