(本小题满分12分)某班主任统计本班50名学生放学回家后学习时间的数据,用条形图表示(如图)。(1)求该班学生每天在家学习时间的平均值;(2)该班主任用分层抽样方法(按学习时间分五层)选出10个学生谈话,求在学习时间为1个小时的学生中选出的人数;(3)假设学生每天在家学习时间为18时至23时,已知甲每天连续学习2小时,乙每天连续学习3小时,求19时至20时甲、乙都在学习的概率.
在△ABC中,角所对的边分别为a,b,c,(1)求角A;(2)若2sinC="3sinB," △ABC的面积,求a.
各项为正的数列满足,,(1)取,求证:数列是等比数列,并求其公比;(2)取时令,记数列的前项和为,数列的前项之积为,求证:对任意正整数,为定值.
函数,(1)若时,求的最大值;(2)设时,若对任意,都有恒成立,且的最大值为2,求的表达式.
已知椭圆,离心率,且过点,(1)求椭圆方程;(2)以为直角顶点,边与椭圆交于两点,求 面积的最大值.
如图,已知平面,为等边三角形,(1)若平面平面,求CD长度;(2)求直线AB与平面ADE所成角的取值范围.