(本小题满分12分)某班主任统计本班50名学生放学回家后学习时间的数据,用条形图表示(如图)。(1)求该班学生每天在家学习时间的平均值;(2)该班主任用分层抽样方法(按学习时间分五层)选出10个学生谈话,求在学习时间为1个小时的学生中选出的人数;(3)假设学生每天在家学习时间为18时至23时,已知甲每天连续学习2小时,乙每天连续学习3小时,求19时至20时甲、乙都在学习的概率.
(本小题满分14分) 在ABC中,BC=,AC=3,sinC="2sinA" (I)求AB的值: (II) 求sin的值.
(本小题满分14分) 已知:集合集合 (1)若,求实数m的取值范围(2)若集合,,求实数m的取值范围.
本小题满分16分)设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为 (1)求的值及的表达式; (2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围; (3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由.
(本小题满分16分)数列{an}的前n项和为Sn(n∈N*),点(an,Sn)在直线y=2x-3n上. (1)若数列{an+c}成等比数列,求常数c的值; (2)求数列{an}的通项公式; (3)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
(本小题满分15分)、某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米. (1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式; (2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?